Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ISME J ; 16(10): 2348-2359, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804051

RESUMO

Parasites are widespread and diverse in oceanic plankton and many of them infect single-celled algae for survival. How these parasites develop and scavenge energy within the host and how the cellular organization and metabolism of the host is altered remain open questions. Combining quantitative structural and chemical imaging with time-resolved transcriptomics, we unveil dramatic morphological and metabolic changes of the marine parasite Amoebophrya (Syndiniales) during intracellular infection, particularly following engulfment and digestion of nutrient-rich host chromosomes. Changes include a sequential acristate and cristate mitochondrion with a 200-fold increase in volume, a 13-fold increase in nucleus volume, development of Golgi apparatus and a metabolic switch from glycolysis (within the host) to TCA (free-living dinospore). Similar changes are seen in apicomplexan parasites, thus underlining convergent traits driven by metabolic constraints and the infection cycle. In the algal host, energy-producing organelles (plastid, mitochondria) remain relatively intact during most of the infection. We also observed that sugar reserves diminish while lipid droplets increase. Rapid infection of the host nucleus could be a "zombifying" strategy, allowing the parasite to digest nutrient-rich chromosomes and escape cytoplasmic defense, whilst benefiting from maintained carbon-energy production of the host cell.


Assuntos
Dinoflagellida , Microalgas , Parasitos , Animais , Carbono , Açúcares
2.
Microorganisms ; 10(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35208840

RESUMO

The increase in emerging harmful algal blooms in the last decades has led to an extensive concern in understanding the mechanisms behind these events. In this paper, we assessed the growth of two blooming dinoflagellates (Alexandrium minutum and Heterocapsa triquetra) and their susceptibility to infection by the generalist parasitoid Parvilucifera rostrata under a temperature gradient. The growth of the two dinoflagellates differed across a range of temperatures representative of the Penzé Estuary (13 to 22 °C) in early summer. A. minutum growth increased across this range and was the highest at 19 and 22 °C, whereas H. triquetra growth was maximal at intermediate temperatures (15-18 °C). Interestingly, the effect of temperature on the parasitoid infectivity changed depending on which host dinoflagellate was infected with the dinoflagellate responses to temperature following a positive trend in A. minutum (higher infections at 20-22 °C) and a unimodal trend in H. triquetra (higher infections at 18 °C). Low temperatures negatively affected parasitoid infections in both hosts (i.e., "thermal refuge"). These results demonstrate how temperature shifts may not only affect bloom development in microalgal species but also their control by parasitoids.

3.
Environ Microbiol ; 24(4): 1731-1745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783136

RESUMO

Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2 . We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.


Assuntos
Alveolados , Estramenópilas , Alveolados/genética , Biodiversidade , Ecossistema , Eucariotos/genética , Água Doce , Filogenia , Estramenópilas/genética
5.
Front Microbiol ; 12: 613199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717003

RESUMO

Paralytic shellfish poisoning (PSP) is a human foodborne syndrome caused by the consumption of shellfish that accumulate paralytic shellfish toxins (PSTs, saxitoxin group). In PST-producing dinoflagellates such as Alexandrium spp., toxin synthesis is encoded in the nuclear genome via a gene cluster (sxt). Toxin production is supposedly associated with the presence of a 4th domain in the sxtA gene (sxtA4), one of the core genes of the PST gene cluster. It is postulated that gene expression in dinoflagellates is partially constitutive, with both transcriptional and post-transcriptional processes potentially co-occurring. Therefore, gene structure and expression mode are two important features to explore in order to fully understand toxin production processes in dinoflagellates. In this study, we determined the intracellular toxin contents of twenty European Alexandrium minutum and Alexandrium pacificum strains that we compared with their genome size and sxtA4 gene copy numbers. We observed a significant correlation between the sxtA4 gene copy number and toxin content, as well as a moderate positive correlation between the sxtA4 gene copy number and genome size. The 18 toxic strains had several sxtA4 gene copies (9-187), whereas only one copy was found in the two observed non-toxin producing strains. Exploration of allelic frequencies and expression of sxtA4 mRNA in 11 A. minutum strains showed both a differential expression and specific allelic forms in the non-toxic strains compared with the toxic ones. Also, the toxic strains exhibited a polymorphic sxtA4 mRNA sequence between strains and between gene copies within strains. Finally, our study supported the hypothesis of a genetic determinism of toxin synthesis (i.e., the existence of several genetic isoforms of the sxtA4 gene and their copy numbers), and was also consistent with the hypothesis that constitutive gene expression and moderation by transcriptional and post-transcriptional regulation mechanisms are the cause of the observed variability in the production of toxins by A. minutum.

6.
BMC Biol ; 19(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407428

RESUMO

BACKGROUND: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION: These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.


Assuntos
Evolução Biológica , DNA de Protozoário/análise , Dinoflagellida/citologia , Dinoflagellida/genética , Organelas/fisiologia , Proteínas de Protozoários/análise , Sequência de Bases , Evolução Molecular , Íntrons/fisiologia
7.
ISME Commun ; 1(1): 34, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37938261

RESUMO

Parasites in the genus Amoebophrya sp. infest dinoflagellate hosts in marine ecosystems and can be determining factors in the demise of blooms, including toxic red tides. These parasitic protists, however, rarely cause the total collapse of Dinophyceae blooms. Experimental addition of parasite-resistant Dinophyceae (Alexandrium minutum or Scrippsiella donghaienis) or exudates into a well-established host-parasite coculture (Scrippsiella acuminata-Amoebophrya sp.) mitigated parasite success and increased the survival of the sensitive host. This effect was mediated by waterborne molecules without the need for a physical contact. The strength of the parasite defenses varied between dinoflagellate species, and strains of A. minutum and was enhanced with increasing resistant host cell concentrations. The addition of resistant strains or exudates never prevented the parasite transmission entirely. Survival time of Amoebophrya sp. free-living stages (dinospores) decreased in presence of A. minutum but not of S. donghaienis. Parasite progeny drastically decreased with both species. Integrity of the dinospore membrane was altered by A. minutum, providing a first indication on the mode of action of anti-parasitic molecules. These results demonstrate that extracellular defenses can be an effective strategy against parasites that protects not only the resistant cells producing them, but also the surrounding community.

8.
Sci Rep ; 10(1): 2531, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054950

RESUMO

As critical primary producers and recyclers of organic matter, the diversity of marine protists has been extensively explored by high-throughput barcode sequencing. However, classification of short metabarcoding sequences into traditional taxonomic units is not trivial, especially for lineages mainly known by their genetic fingerprints. This is the case for the widespread Amoebophrya ceratii species complex, parasites of their dinoflagellate congeners. We used genetic and phenotypic characters, applied to 119 Amoebophrya individuals sampled from the same geographic area, to construct practical guidelines for species delineation that could be applied in DNA/RNA based diversity analyses. Based on the internal transcribed spacer (ITS) regions, ITS2 compensatory base changes (CBC) and genome k-mer comparisons, we unambiguously defined eight cryptic species among closely related ribotypes that differed by less than 97% sequence identity in their SSU rDNA. We then followed the genetic signatures of these parasitic species during a three-year survey of Alexandrium minutum blooms. We showed that these cryptic Amoebophrya species co-occurred and shared the same ecological niche. We also observed a maximal ecological fitness for parasites having narrow to intermediate host ranges, reflecting a high cost for infecting a broader host range. This study suggests that a complete taxonomic revision of these parasitic dinoflagellates is long overdue to understand their diversity and ecological role in the marine plankton.


Assuntos
Dinoflagellida/genética , DNA Ribossômico/genética , Dinoflagellida/classificação , Óperon , Fenótipo , Infecções por Protozoários/parasitologia , Ribossomos/genética , Ribotipagem , Sequenciamento Completo do Genoma
9.
Front Microbiol ; 11: 600823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424803

RESUMO

Dinoflagellates are major components of phytoplankton that play critical roles in many microbial food webs, many of them being hosts of countless intracellular parasites. The phototrophic dinoflagellate Scrippsiella acuminata (Dinophyceae) can be infected by the microeukaryotic parasitoids Amoebophrya spp. (Syndiniales), some of which primarily target and digest the host nucleus. Early digestion of the nucleus at the beginning of the infection is expected to greatly impact the host metabolism, inducing the knockout of the organellar machineries that highly depend upon nuclear gene expression, such as the mitochondrial OXPHOS pathway and the plastid photosynthetic carbon fixation. However, previous studies have reported that chloroplasts remain functional in swimming host cells infected by Amoebophrya. We report here a multi-approach monitoring study of S. acuminata organelles over a complete infection cycle by nucleus-targeting Amoebophrya sp. strain A120. Our results show sustained and efficient photosystem II activity as a hallmark of functional chloroplast throughout the infection period despite the complete digestion of the host nucleus. We also report the importance played by light on parasite production, i.e., the amount of host biomass converted to parasite infective propagules. Using a differential gene expression analysis, we observed an apparent increase of all 3 mitochondrial and 9 out of the 11 plastidial genes involved in the electron transport chains (ETC) of the respiration pathways during the first stages of the infection. The longer resilience of organellar genes compared to those encoded by the nucleus suggests that both mitochondria and chloroplasts remain functional throughout most of the infection. This extended organelle functionality, along with higher parasite production under light conditions, suggests that host bioenergetic organelles likely benefit the parasite Amoebophrya sp. A120 and improve its fitness during the intracellular infective stage.

10.
Protist ; 170(2): 187-208, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31055251

RESUMO

Nassellaria are marine protists belonging to the Radiolaria lineage (Rhizaria). Their skeleton, made of opaline silica, exhibit an excellent fossil record, extremely valuable in micro-paleontological studies for paleo-environmental reconstruction. Yet, to date very little is known about the extant diversity and ecology of Nassellaria in contemporary oceans, and most of it is inferred from their fossil record. Here we present an integrative classification of Nassellaria based on taxonomical marker genes (18S and 28S ribosomal DNA) and morphological characteristics obtained by optical and scanning electron microscopy imaging. Our phylogenetic analyses distinguished 11 main morpho-molecular clades relying essentially on the overall morphology of the skeleton and not on internal structures as previously considered. Using fossil calibrated molecular clock we estimated the origin of Nassellaria among radiolarians primitive forms in the Devonian (ca. 420 Ma), that gave rise to living nassellarian groups in the Triassic (ca. 250 Ma), during the biggest diversification event over their evolutionary history. This morpho-molecular framework provides both a new morphological classification easier to identify under light microscopy and the basis for future molecular ecology surveys. Altogether, it brings a new standpoint to improve our scarce understanding of the ecology and worldwide distribution of extant nassellarians.


Assuntos
Filogenia , Rhizaria/classificação , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Rhizaria/citologia , Rhizaria/genética , Rhizaria/ultraestrutura , Tempo
11.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889236

RESUMO

Photosynthetic picoeukaryotes (PPE) are key components of primary production in marine and freshwater ecosystems. In contrast with those of marine environments, freshwater PPE groups have received little attention. In this work, we used flow cytometry cell sorting, microscopy and metabarcoding to investigate the composition of small photosynthetic eukaryote communities from six eutrophic shallow lakes in South America, Argentina. We compared the total molecular diversity obtained from PPE sorted populations as well as from filtered total plankton samples (FTP). Most reads obtained from sorted populations belonged to the classes: Trebouxiophyceae, Chlorophyceae and Bacillariophyceae. We retrieved sequences from non-photosynthetic groups, such as Chytridiomycetes and Ichthyosporea which contain a number of described parasites, indicating that these organisms were probably in association with the autotrophic cells sorted. Dominant groups among sorted PPEs were poorly represented in FTP and their richness was on average lower than in the sorted samples. A significant number of operational taxonomic units (OTUs) were exclusively found in sorting samples, emphasizing that sequences from FTP underestimate the diversity of PPE. Moreover, 22% of the OTUs found among the dominant groups had a low similarity (<95%) with reported sequences in public databases, demonstrating a high potential for novel diversity in these lakes.


Assuntos
Eucariotos/isolamento & purificação , Lagos/parasitologia , Argentina , Biodiversidade , Clorófitas/classificação , Clorófitas/citologia , Clorófitas/genética , Clorófitas/metabolismo , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Diatomáceas/metabolismo , Ecossistema , Eucariotos/classificação , Eucariotos/genética , Eucariotos/metabolismo , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Lagos/análise , Fotossíntese , Filogenia
12.
Front Microbiol ; 9: 2251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333799

RESUMO

Understanding factors that generate, maintain, and constrain host-parasite associations is of major interest to biologists. Although little studied, many extremely virulent micro-eukaryotic parasites infecting microalgae have been reported in the marine plankton. This is the case for Amoebophrya, a diverse and highly widespread group of Syndiniales infecting and potentially controlling dinoflagellate populations. Here, we analyzed the time-scale gene expression of a complete infection cycle of two Amoebophrya strains infecting the same host (the dinoflagellate Scrippsiella acuminata), but diverging by their host range (one infecting a single host, the other infecting more than one species). Over two-thirds of genes showed two-fold differences in expression between at least two sampled stages of the Amoebophrya life cycle. Genes related to carbohydrate metabolism as well as signaling pathways involving proteases and transporters were overexpressed during the free-living stage of the parasitoid. Once inside the host, all genes related to transcription and translation pathways were actively expressed, suggesting the rapid and extensive protein translation needed following host-cell invasion. Finally, genes related to cellular division and components of the flagellum organization were overexpressed during the sporont stage. In order to gain a deeper understanding of the biological basis of the host-parasitoid interaction, we screened proteins involved in host-cell recognition, invasion, and protection against host-defense identified in model apicomplexan parasites. Very few of the genes encoding critical components of the parasitic lifestyle of apicomplexans could be unambiguously identified as highly expressed in Amoebophrya. Genes related to the oxidative stress response were identified as highly expressed in both parasitoid strains. Among them, the correlated expression of superoxide dismutase/ascorbate peroxidase in the specialist parasite was consistent with previous studies on Perkinsus marinus defense. However, this defense process could not be identified in the generalist Amoebophrya strain, suggesting the establishment of different strategies for parasite protection related to host specificity.

13.
Front Microbiol ; 9: 3235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687251

RESUMO

The marine diatom Guinardia delicatula is a cosmopolitan species that dominates seasonal blooms in the English Channel and the North Sea. Several eukaryotic parasites are known to induce the mortality of this species. Here, we report the isolation and characterization of the first viruses that infect G. delicatula. Viruses were isolated from the Western English Channel (SOMLIT-Astan station) during the late summer bloom decline of G. delicatula. A combination of laboratory approaches revealed that these lytic viruses (GdelRNAV) are small tailless particles of 35-38 nm in diameter that replicate in the host cytoplasm where both unordered particles and crystalline arrays are formed. GdelRNAV display a linear single-stranded RNA genome of ~9 kb, including two open reading frames encoding for replication and structural polyproteins. Phylogenetic relationships based on the RNA-dependent-RNA-polymerase gene marker showed that GdelRNAV are new members of the Bacillarnavirus, a monophyletic genus belonging to the order Picornavirales. GdelRNAV are specific to several strains of G. delicatula. They were rapidly and largely produced (<12 h, 9.34 × 104 virions per host cell). Our analysis points out the host's variable viral susceptibilities during the early exponential growth phase. Interestingly, we consistently failed to isolate viruses during spring and early summer while G. delicatula developed important blooms. While our study suggests that viruses do contribute to the decline of G. delicatula's late summer bloom, they may not be the primary mortality agents during the remaining blooms at SOMLIT-Astan. Future studies should focus on the relative contribution of the viral and eukaryotic pathogens to the control of Guinardia's blooms to understand the fate of these prominent organisms in marine systems.

14.
Eur J Protistol ; 61(Pt A): 265-277, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28778555

RESUMO

Microscopic and phylogenetic analyses were performed on endocommensal astome ciliates retrieved from the middle intestine of a marine cirratulid polychaete, Cirriformia tentaculata, collected in the bay of Roscoff (English Channel, Northwest French coast) and on the Southwest English coast. Three morphotypes of the astome genus Durchoniella were identified, two corresponding to described species (the type species Durchoniella brasili (Léger and Duboscq, 1904) De Puytorac, 1954 and Durchoniella legeriduboscqui De Puytorac, 1954) while a third morphotype remains undescribed. Their small subunit (SSU) rRNA gene sequences showed at least 97.2% identity and phylogenetic analyses grouped them at the base of the subclass Scuticociliatia (Oligohymenophorea), as a sister lineage to all astomes from terrestrial oligochaete annelids. Ultrastructural examination by transmission electron microscopy and fluorescence in situ hybridization analyses revealed the presence of endocytoplasmic cocci and rod-shaped bacteria surrounded by a very thin membrane. These endocytoplasmic bacteria may play a role in the association between endocommensal astome ciliates and cirratulid polychaetes inhabiting in anoxic coastal sediments.


Assuntos
Oligoimenóforos/classificação , Oligoimenóforos/fisiologia , Filogenia , Poliquetos/parasitologia , Animais , Microscopia Eletrônica de Transmissão , Oligoimenóforos/genética , Oligoimenóforos/ultraestrutura , RNA Ribossômico 18S/genética
15.
ISME J ; 11(6): 1331-1344, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28338675

RESUMO

Collodaria are heterotrophic marine protists that exist either as large colonies composed of hundreds of cells or as large solitary cells. All described species so far harbour intracellular microalgae as photosymbionts. Although recent environmental diversity surveys based on molecular methods demonstrated their consistently high contribution to planktonic communities and their worldwide occurrence, our understanding of their diversity and biogeography is still very limited. Here we estimated the 18S ribosomal DNA (rDNA) gene copies per collodarian cell for solitary (5770±1960 small subunit (SSU) rDNA copies) and colonial specimens (37 474±17 799 SSU rDNA copies, for each individual cell within a colony) using single-specimen quantitative PCR. We then investigated the environmental diversity of Collodaria within the photic zone through the metabarcoding survey from the Tara Oceans expedition and found that the two collodarian families Collosphaeridae and Sphaerozoidae contributed the most to the collodarian diversity and encompassed mostly cosmopolitan taxa. Although the biogeographical patterns were homogeneous within each biogeochemical biome considered, we observed that coastal biomes were consistently less diverse than oceanic biomes and were dominated by the Sphaerozoidae while the Collosphaeridae were dominant in the open oceans. The significant relationships with six environmental variables suggest that collodarian diversity is influenced by the trophic status of oceanic provinces and increased towards more oligotrophic regions.


Assuntos
Oceanos e Mares , Filogenia , Rhizaria/genética , Rhizaria/fisiologia , Distribuição Animal , Animais , DNA Ribossômico/genética , Variação Genética , Plâncton , RNA Ribossômico 18S/genética
16.
ISME J ; 11(3): 601-612, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28085157

RESUMO

The genus Micromonas comprises phytoplankton that show among the widest latitudinal distributions on Earth, and members of this genus are recurrently infected by prasinoviruses in contrasted thermal ecosystems. In this study, we assessed how temperature influences the interplay between the main genetic clades of this prominent microalga and their viruses. The growth of three Micromonas strains (Mic-A, Mic-B, Mic-C) and the stability of their respective lytic viruses (MicV-A, MicV-B, MicV-C) were measured over a thermal range of 4-32.5 °C. Similar growth temperature optima (Topt) were predicted for all three hosts but Mic-B exhibited a broader thermal tolerance than Mic-A and Mic-C, suggesting distinct thermoacclimation strategies. Similarly, the MicV-C virus displayed a remarkable thermal stability compared with MicV-A and MicV-B. Despite these divergences, infection dynamics showed that temperatures below Topt lengthened lytic cycle kinetics and reduced viral yield and, notably, that infection at temperatures above Topt did not usually result in cell lysis. Two mechanisms operated depending on the temperature and the biological system. Hosts either prevented the production of viral progeny or maintained their ability to produce virions with no apparent cell lysis, pointing to a possible switch in the viral life strategy. Hence, temperature changes critically affect the outcome of Micromonas infection and have implications for ocean biogeochemistry and evolution.


Assuntos
Clorófitas/virologia , Phycodnaviridae/fisiologia , Clorófitas/crescimento & desenvolvimento , Ecossistema , Interações Hospedeiro-Patógeno , Phycodnaviridae/classificação , Phycodnaviridae/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/virologia , Água do Mar , Temperatura , Vírion/fisiologia
17.
Proc Biol Sci ; 283(1841)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798309

RESUMO

Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, using cross-inoculation experiments across time and space. Higher parasite abundance was associated with a large daily reduction in relative A. minutum abundances, demonstrating strong parasite-mediated selection. There was genetic variability in infectivity in both parasite species, and in resistance in the host. We found no evidence for coevolution in one estuary; however, in the other estuary, we found high genetic diversity in the two parasite species, fluctuations in infectivity and suggestion that the two parasites are well adapted to their host, as in 'Red Queen' dynamics. Thus, coevolution is possible over the short time span of a bloom, but geographically variable, and may feedback on community dynamics.


Assuntos
Coevolução Biológica , Dinoflagellida/genética , Eutrofização , Parasitos/genética , Animais , Estuários , Variação Genética , Interações Hospedeiro-Parasita , Parasitos/classificação , Dinâmica Populacional , Seleção Genética
18.
FEMS Microbiol Ecol ; 92(7)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27162179

RESUMO

The multiannual dynamic of the cyst-forming and toxic marine dinoflagellate Alexandrium minutum was studied over a time scale of about 150 years by a paleoecological approach based on ancient DNA (aDNA) quantification and cyst revivification data obtained from two dated sediment cores of the Bay of Brest (Brittany, France). The first genetic traces of the species presence in the study area dated back to 1873 ± 6. Specific aDNA could be quantified by a newly developed real-time PCR assay in the upper core layers, in which the germination of the species (in up to 17-19-year-old sediments) was also obtained. In both cores studied, our quantitative paleogenetic data showed a statistically significant increasing trend in the abundance of A. minutum ITS1 rDNA copies over time, corroborating three decades of local plankton data that have documented an increasing trend in the species cell abundance. By comparison, paleogenetic data of the dinoflagellate Scrippsiella donghaienis did not show a coherent trend between the cores studied, supporting the hypothesis of the existence of a species-specific dynamic of A. minutum in the study area. This work contributes to the development of paleoecological research, further showing its potential for biogeographical, ecological and evolutionary studies on marine microbes.


Assuntos
Dinoflagellida/isolamento & purificação , Sedimentos Geológicos/parasitologia , Baías , DNA Ribossômico/genética , Dinoflagellida/classificação , Dinoflagellida/genética , Dinoflagellida/metabolismo , Ecossistema , França , Sedimentos Geológicos/química , História do Século XX , História do Século XXI , Paleografia/história , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie
19.
Protist ; 165(2): 230-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24709472

RESUMO

Environmental 18S rRNA gene surveys of microbial eukaryotes have recently revealed the diversity of major parasitic agents in pelagic freshwater systems, consisting primarily of chytrid fungi. To date, only a few studies have reported the presence of chydrids in the marine environment and a limited number of marine chytrids have been properly identified and characterized. Here, we report the isolation and cultivation of a marine chytrid from samples taken during a bloom of the toxic dinoflagellate Alexandrium minutum in the Arenys de Mar harbour (Mediterranean Sea, Spain). Cross-infections using cultures and natural phytoplankton communities revealed that this chytrid is only able to infect certain species of dinoflagellates, with a rather wide host range but with a relative preference for Alexandrium species. Phylogenetic analyses showed that it belongs to the order Rhizophydiales, but cannot be included in any of the existing families within this order. Several ultrastructural characters confirmed the placement of this taxon within the Rhizophydiales as well its novelty notably in terms of zoospore structure. This marine chytridial parasitoid is described as a new genus and species, Dinomyces arenysensis, within the Dinomycetaceae fam. nov.


Assuntos
Organismos Aquáticos/microbiologia , Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Dinoflagellida/microbiologia , Quitridiomicetos/genética , Quitridiomicetos/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Especificidade de Hospedeiro , Mar Mediterrâneo , Microscopia , Dados de Sequência Molecular , Filogenia , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Espanha
20.
Protist ; 165(1): 31-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24334099

RESUMO

The diversity and ecological roles of protists in marine plankton are still poorly known. In 2011, we made a substantial effort to isolate parasites into cultures during the course of blooms of the toxic microalga Alexandrium minutum (Dinophyceae) in two estuaries (the Penzé and the Rance, Brittany coast, north-west of France). In total, 99 parasitic strains were obtained. Screening of ribosomal internal transcribed spacer regions (including ITS1, 5.8S and ITS2) revealed the existence of two ribotypes. Small subunit and partial large subunit rRNA genes revealed that these two ribotypes belong to different species of the genus Parvilucifera. The first ribotype was tentatively affiliated to the species Parvilucifera infectans, whilst the second represents a new species, Parvilucifera rostrata sp. nov. The new species has several distinct morphological features in the general organization of its zoospore and in the shape and size of processes covering the sporangium. Both Parvilucifera species are generalist parasitoids with similar generation times, and this study thus raises the question of how two parasitoids exploiting similar ecological resources and infection strategies can coexist in the same ecosystem. Taxonomic relationships between Parvilucifera spp. and other closely related marine parasitoids, such as syndinians, are discussed.


Assuntos
Alveolados/classificação , Alveolados/isolamento & purificação , Dinoflagellida/parasitologia , Alveolados/citologia , Alveolados/genética , Organismos Aquáticos/parasitologia , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ecossistema , França , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA de Protozoário/genética , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA